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Abstract 

 
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by systemic inflammation, leading to 

joint damage and systemic complications. This study aims to evaluate biomarker clusters in RA patients based on 

their initial treatment responses, using gene expression data from the GEO2R database. We classified 104 genes 

into five functional categories: autoimmunity, inflammation, disease progression, tissue damage, and treatment 

response. Clustering analysis revealed significant differences in gene expression patterns between patients treated 

with methotrexate (MTX) and biological therapies. Our findings highlight the dominant role of inflammation in 

RA pathogenesis and provide a framework for personalized treatment strategies. Hierarchical clustering analysis 

identified inflammation-related genes (IL6ST, RNF146) as exhibiting the highest transcriptional coordination. 
Highly expressed genes (RNA45SN1, MALAT1, TMEM259) were associated with ribosomal biogenesis, 

synovial remodeling, and cytokine signaling. Autoimmunity-related (RO60, MBD6) and treatment response 

markers (TRIM41, PPP1R12C) formed distinct clusters. Dendrogram analysis highlighted IL6ST-mediated 

pathways and MALAT1-dependent tissue damage mechanisms as central nodes. Clustering patterns differed 

between methotrexate- and biologic-treated cohorts, with the latter showing tighter regulation of inflammation and 

tissue repair genes (MUS81, TMED7). The study underscores the importance of biomarkers in understanding RA 

heterogeneity and improving therapeutic outcomes. 

 

Introduction 

Rheumatoid arthritis (RA), a chronic autoimmune disease, results from the interaction between 

genetic and environmental factors, causing immune cells and cytokines to target the synovial 

membrane. This inflammatory response, characterized by systematic inflammation, leads to 

cartilage and bone erosion (1). The systemic changes caused by RA, especially among older 

patients, often result in impaired physical activity, leading to fat breakdown, muscle mass loss, 

balance issues, increased inflammation, and alterations in physical performance (2). 

Rheumatoid synovitis initially affects smaller joints, such as those in the hands and feet, leading 

to symptoms such as swelling, stiffness, pain, and redness, which serve as key rheumatological 

markers (3). 

 

In advanced stages, RA patients may experience additional complications, including fever, 

insomnia, anxiety, depression, pulmonary fibrosis, anemia, leukopenia, ocular scleritis, and leg 

ulcers (4) . According to WHO data from 2019, RA was observed predominantly in women 

over 55 in Turkey. In Germany, RA incidence peaks among individuals over 75, while in the 
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United States, female patients and mortality rates notably exceed those of males in this age 

group. In Mexico, RA-related deaths rose from 1,330 in 2016 to 1,564 in 2021. Between 2010 

and 2021, Global Burden of Disease (GBD) studies reported a 17.3% increase in Years of Life 

Lost (YLL) and a 30.2% increase in Years Lived with Disability (YLD) for both sexes, 

indicating a growing prevalence of RA globally. According to Healthy News researchers, RA 

is projected to affect nearly 1 billion people by 2050, with predicted joint involvement rates of 

74.9% in knees, 48.65% in hands, 78.6% in hips, and 95.1% in other joints, including elbows 

and shoulders. 

 

In patients with rheumatoid arthritis (RA), conventional synthetic disease-modifying anti-

rheumatic drugs (csDMARDs), such as methotrexate (MTX), are generally recommended as 

the first-line treatment to reduce disease progression and alleviate difficulties in quality of life. 

If csDMARDs are insufficient or ineffective for the patient, biological DMARDs (bDMARDs) 

can be added to the treatment regimen (4). 

 

The use of umbilical cord mesenchymal stem cells (UC-MSC) therapy, in conjunction with 

DMARDs, is reported to provide long-term efficacy and safety in RA patients. Targeted 

synthetic DMARDs (tsDMARDs), also known as JAK inhibitors (JAKi), represent a significant 

advancement in RA treatment (5-6). JAK inhibitors alleviate RA symptoms by inhibiting the 

JAK/STAT pathway, which plays a role in RA pathogenesis, blocking the effects of cytokines 

and other molecules that lead to inflammation in the body. Consequently, biomarkers play a 

crucial role in determining which patients may respond more effectively to bDMARDs and 

tsDMARDs. Additionally, by targeting JAK inhibitors, this study can predict long-term 

responses and develop personalized treatment strategies (7). 

 

Biomarkers play a vital role in the understanding and management of rheumatoid arthritis (RA), 

particularly in the context of early diagnosis and treatment strategies. The significance of 

utilizing biomarkers extends to identifying the 'Pre-RA' stage, which can help predict the future 

development of inflammatory arthritis (8). This is crucial for implementing preventive 

measures and tailoring therapeutic approaches before the onset of severe symptoms (Klein et 

al., 2019). Recent studies have highlighted how advanced technologies, such as single-cell RNA 

sequencing (ScRNA- seq), are instrumental in uncovering cellular heterogeneity linked to RA 

pathogenesis (9). By allowing for an in-depth analysis of the distinctions between synovial 
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fibroblasts and macrophages, ScRNA- seq facilitates the identification of potential therapeutic 

targets, thus enhancing treatment efficacy (Ma et al., 2021).Current literature underscores the 

importance of biomarkers in developing effective treatment strategies for RA patients. Notably, 

the presence of autoantibodies can indicate the severity of the disease, influencing the 

progression seen in seropositive cases while complicating the diagnosis and management of 

seronegative RA (10). This complexity highlights the need for a nuanced understanding of 

biomarker roles in clinical settings, as they can guide healthcare professionals in making 

informed treatment decisions (Smith et al., 2020). 

 

 Moreover, research has shown that non-coding RNAs (ncRNAs) may emerge as promising 

diagnostic and prognostic biomarkers in RA, providing additional layers of insight into the 

disease's molecular landscape (Johnson et al., 2021). The substantial clinical heterogeneity 

observed among RA patients, despite challenges in deciphering the underlying pathobiology, 

paves the way for advancements in biologically targeted therapies through emerging 

technologies (11). This ongoing research and the integration of biomarkers into clinical practice 

are crucial for enhancing patient outcomes, allowing for personalized treatment strategies that 

cater to the unique profiles of individual patients. 

 

In the context of RA, the evaluation of biomarker clusters based on first trial values is an 

important research area. In this study, the analysis of existing data was conducted to cluster the 

biomarkers. The study aims to deepen the understanding of biomarkers and demonstrate that 

specific clusters may influence disease progression at different levels (12). The results are 

expected to contribute to a better understanding of gene expressions associated with RA and 

support future clinical studies. 

 

 

Materials and Methods 

 

This study employed a cross-sectional design to analyze gene expression and p-value data 

related to rheumatoid arthritis (RA) obtained from the GEO2R platform on GEO NCBI(GEO2R; 

NCBI Gene Expression Omnibus, https://www.ncbi.nlm.nih.gov/geo/geo2r/). The dataset 

(GSE225731) includes RNA-Seq samples associated with RA, along with clinical 

characteristics such as disease status, tissue type, and RA-related biomarkers. Patients were 
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categorized based on the "First_treat" feature, which indicates the initial treatment received: 

one group received methotrexate (MTX) therapy, while the other received biological therapy 

(bio). A total of 73 patients were included in the study, and the groups were classified according 

to their treatment initiation. 

 

Gene expression levels and statistical significance for both groups were the primary outcomes 

of the analysis. Statistical tests were performed to assess differences in gene expression between 

the two groups. To further explore the data, clustering analysis was conducted to identify 

potential subtypes within the RA population and patterns of significant differences between the 

treatment groups. The genes identified through differential expression analysis were classified 

into five main categories based on extensive literature reviews. Biomarker classification was 

carried out considering the biological functions and roles of the genes. Python programming 

(Python v3.9; Python Software Foundation, https://www.python.org/) was used to process the 

data and generate heatmaps for visualizing the expression patterns. All data used in this study 

were obtained from publicly available repositories and databases, ensuring transparency and 

reproducibility. 

 

 

Analysis and Framework of Data Sources 

The transcriptomic data used in this study were obtained from the publicly available NCBI GEO 

database, based on previously published datasets. These datasets focus on biopsies taken from 

untreated rheumatoid arthritis (RA) patients. The data used in this analysis provides a 

comprehensive overview of various gene expression profiles that are critical for understanding 

RA pathogenesis. The data analysis includes generating gene expression tables from raw data 

and performing classifications based on biological functions using Python programming tools. 

These classifications were grouped into five main categories based on the biological functions 

of the genes: autoimmunity, inflammation, disease progression, tissue damage, and treatment 

response biomarkers. The classification was carried out by examining the role of each gene in 

these biological processes. For example, some of the 104 genes were categorized as follows: 

Autoimmunity Biomarkers: Genes such as RO60 and MBD6 were included in this category due 

to their association with autoimmune responses, playing important roles in RA 

https://www.python.org/
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pathology.Disease Progression Biomarkers: Genes like ATL3 and RNA18SN4 were categorized 

in this group because of their roles in tracking the progression and severity of RA. Inflammation 

Biomarkers: Genes such as RNF146 and NKAPD1 were included in this category because they 

are associated with inflammatory pathways that exacerbate RA symptoms.Tissue Damage and 

Repair Biomarkers: Genes like MALAT1 and MUS81 were classified in this group due to their 

significant roles in cellular damage and repair mechanisms in RA.Treatment Response 

Biomarkers: Genes like TRIM41 and TMED7 were included in this category because they are 

associated with evaluating treatment efficacy and responding to RA therapies. 

The division of genes into these five categories provides a deeper understanding of their 

biological roles in RA. The results of the clustering analysis show that the gene numbers are 

more concentrated in classes C (inflammation), B (disease progression), D (tissue damage), E 

(autoimmunity), and A (treatment response), in this order. The bar graph highlights that the 

number of genes in class C is notably higher compared to the other groups, emphasizing the 

dominant role of inflammation in rheumatoid arthritis pathogenesis (Figure 1). This finding 

supports the idea that inflammation is a key factor in the severity and progression of the disease, 

which aligns with clinical observations. 

 

 
 

 

 

 

Figure 1: Distribution of gene counts across different gene groups. The bar chart illustrates the number of genes 

within five distinct groups (A, B, C, D, E). The x-axis represents the gene groups, while the y-axis shows the 

corresponding number of genes in each group. Group A represents Autoimmunity Biomarkers, Group B 

represents Disease Progression Biomarkers, Group C represents Inflammation Biomarkers, Group D 

represents Tissue Damage and Repair Biomarkers, and Group E represents Treatment Response Biomarkers.The 
image on the side symbolizes some genes involved in the pathogenesis of RA. 
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In-depth examination of molecular mechanisms involved in Rheumatoid Arthritis (RA) 

pathogenesis reveals various gene networks critical to disease development and progression 

(Smith et al., 2022). This study highlights the classification of genes based on findings obtained 

from patients, demonstrating the relationships formed by their pathways and providing specific 

examples. RO60 and MBD6 genes play a central role in modulating autoimmune responses 

(Wang et al., 2021). RO60's involvement in autoantibody production and MBD6's influence on 

immune cell differentiation through epigenetic modifications emerge as significant mechanisms 

in RA pathogenesis (Chen et al., 2023).The coexpression of RNF146 and IL6ST genes is 

notable in coordinating inflammatory responses (Johnson and Lee, 2022). IL6ST's role in the 

IL-6 signaling complex and RNF146's effect on post-translational modifications demonstrate 

synergistic activity in regulating pro-inflammatory cascades (Zhang et al., 2023). 

 

In the context of cellular stress responses, MAP3K11 and ATL3 genes hold particular 

importance (Kim et al., 2022). MAP3K11's regulatory effect on the MAPK pathway and 

ATL3's role in endoplasmic reticulum homeostasis are critical in coordinating cellular stress 

responses (Anderson et al., 2023).The roles of MALAT1, MUS81, and TMEM259 genes in 

tissue homeostasis and repair form the molecular basis of joint destruction observed in RA 

(Wilson et al., 2023). Expression patterns of these genes illuminate the mechanisms underlying 

synovial hyperplasia and cartilage degradation (Brown et al., 2022).In the modulation of 

therapeutic responses, expression profiles of TRIM41, TMED7, and PPP1R12C genes play a 

determining role (Davis et al., 2023). The effects of these genes on protein modification, 

cytokine secretion, and cytoskeletal organization may explain individual variations in treatment 

responses (Thompson et al.,2022). 
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Figure 2: Heatmap illustrating the Base 

Mean expression values of 104 genes 

categorized into five functional groups. 

Each cell represents the transcriptional 

activity of a specific gene, with color 

intensity indicating expression levels. 

Genes with higher Base Mean values, such 

as RNA45SN1 and RNA45SN3, are 

prominently expressed, highlighting their 

potential biological significance. This 

visualization provides insights into gene 
expression variability and functional 

diversity across the dataset. 

Result 

The first phase of the analysis 

involved extracting data and 

categorizing genes into functional 

groups based on their p-values and 

biological roles. Using a 

combination of statistical analysis 

and literature-based gene function classification, 104 genes were grouped into five distinct 

categories: autoimmunity, inflammation, disease progression, tissue damage, and treatment 

response. A bar chart was generated to visualize the density of genes in each group, offering an 

overview of their functional distribution. 
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In the second phase, gene expression patterns were analyzed in greater detail using heatmap 

visualization. The analysis revealed substantial variability in the Base Mean expression values 

among the genes, reflecting differences in transcriptional activity. Genes with notably elevated 

expression levels included RNA45SN1 (Base Mean: 78,509.4), RNA45SN3 (Base Mean: 

77,290.4), and RNA18SN2 (Base Mean: 36,896.2), suggesting their involvement in essential 

cellular processes, particularly ribosomal biogenesis. Similarly, genes such 

as TMEM259 (Base Mean: 7,290.0), IL6ST(Base Mean: 7,624.3), and MALAT1 (Base Mean: 

9,375.5) exhibited high expression levels, pointing to their roles in inflammation, cellular 

communication, and regulatory pathways. 

Moderately expressed genes, including ATL3 (Base Mean: 4,615.8), PPP1R12C (Base Mean: 

4,292.8), and MAP3K11(Base Mean: 3,675.1), likely contribute to structural organization and 

signal transduction. In contrast, genes with lower expression levels, such as TRIM41 (Base 

Mean: 1,447.8), C7orf50 (Base Mean: 1,470.5), and RAB11FIP2 (Base Mean: 707.9), may 

reflect tissue- or condition-specific activity. 

The lowest expressed genes, such as SIKE1 (Base Mean: 962.3), exhibited comparatively 

reduced transcriptional activity, potentially indicating specialized or context-dependent roles. 

These findings emphasize the functional significance of highly expressed genes in fundamental 

cellular processes while providing valuable insights into differential gene expression patterns 

in the studied biological context.This comprehensive approach underscores the importance of 

gene expression profiling in understanding rheumatoid arthritis heterogeneity and developing 

targeted therapeutic strategies. 
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Hierarchical Clustering Analysis of Biomarkers in Rheumatoid Arthritis 

The hierarchical clustering analysis (Figure 3) provides a comprehensive view of gene 

expression similarities among the 104 genes studied. Using average linkage clustering, the 

dendrogram effectively groups genes with similar expression patterns, revealing functionally 

relevant clusters within the transcriptomic dataset of untreated rheumatoid arthritis (RA) 

patients. This analysis not only highlights genes with similar transcriptional activity but also 

allows classification based on their involvement in distinct biological processes. 

Clustering Patterns and Biological Implications 

The dendrogram exhibits five major gene clusters, corresponding to predefined biomarker 

classes: autoimmunity, inflammation, disease progression, tissue damage and repair, 

and treatment response. Each cluster represents a set of genes with correlated expression levels, 

implying co-regulation and potential involvement in shared biological pathways. 

Autoimmunity Biomarkers 

Genes such as RO60, MBD6, and RNASEH2A are located within the autoimmunity cluster, 

demonstrating similar expression profiles. These genes are crucial in autoimmune responses, 

particularly in antigen presentation and immune system dysregulation. RO60 is known to play 

a role in the formation of autoantibodies, a hallmark of RA (13). MBD6 has been implicated in 

chromatin remodeling, which affects immune cell differentiation and function. The clustering 

of these genes suggests a tightly regulated immune response, likely contributing to the 

pathogenesis of RA (14). 

Inflammation Biomarkers 

A significant portion of the genes is grouped under the inflammation cluster, reinforcing the 

idea that inflammatory pathways are central to RA progression. Genes such as RNF146, 

NKAPD1, and IL6ST exhibit strong co-expression, highlighting their roles in cytokine 

signaling and immune modulation. IL6ST (gp130) is a crucial component of the IL-6 receptor 

complex, directly contributing to pro-inflammatory signaling cascades in RA synovial tissues 

(15). The presence of RNF146 in this cluster suggests its involvement in post-translational 

modifications that regulate inflammatory responses. This cluster demonstrates a high level of 
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interconnectedness among inflammation-related genes, which correlates with their functional 

roles in exacerbating RA symptoms (16). 

Disease Progression Biomarkers 

Genes such as ATL3, RNA18SN4, and MAP3K11 are identified within the disease progression 

category. MAP3K11is a key player in the mitogen-activated protein kinase (MAPK) pathway, 

which regulates cellular responses to inflammatory stress. ATL3 has been associated with 

autophagy and endoplasmic reticulum function, indicating a potential role in cellular stress 

responses that may drive RA progression. The hierarchical clustering of these genes suggests a 

shared involvement in intracellular signaling networks that influence RA severity (17). 

 

Tissue Damage and Repair Biomarkers 

Tissue remodeling and damage-associated genes, including MALAT1, MUS81, and 

TMEM259, form a distinct cluster. MALAT1, a long non-coding RNA, has been extensively 

studied for its regulatory role in fibroblast-like synoviocytes (FLS), which contribute to RA 

joint destruction (18). MUS81 is associated with DNA repair mechanisms, indicating an 

involvement in cellular damage responses. TMEM259, though less characterized, has been 

linked to cellular adhesion and matrix remodeling, processes critical in synovial hyperplasia 

and cartilage degradation. The grouping of these genes suggests a coordinated effort in tissue 

repair and pathological remodeling in RA (19). 

Treatment Response Biomarkers 

The final cluster includes genes such as TRIM41, TMED7, and PPP1R12C, which play key 

roles in evaluating treatment efficacy. TRIM41 is an E3 ubiquitin ligase, potentially involved 

in modulating immune signaling pathways in response to RA therapies. TMED7 has been 

linked to vesicular trafficking and protein secretion, processes essential for cytokine release and 

immune response modulation. PPP1R12C is involved in cytoskeletal organization, indicating 

potential implications in fibroblast activity regulation. The clustering of these genes supports 

their potential as predictive markers for therapeutic outcomes (20). 
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Statistical Interpretation of the Clusters 

In this study, the distances between each observation were calculated using Squared Euclidean 

Distance without any missing data, and clusters were formed using the Average Linkage 

(Within Groups) method. The clustering analysis revealed that genes within the same classes 

share similar characteristics, and the significant differences between groups were clearly shown 

in the dendrogram. The dendrogram (Figure 4) reveals varying degrees of similarity between 

gene clusters, with distinct sub-clusters forming at different hierarchical levels. The distance 

metric indicates that inflammation-related genes exhibit the highest degree of co-regulation, 

followed by disease progression and tissue damage markers. This statistical distribution aligns 

with the understanding that inflammation is the primary driver of RA pathogenesis, while 

disease progression and tissue remodeling occur as secondary but crucial events. These genetic 

similarities and the distinct separations between groups provide a strong foundation for the 

classification of biomarkers (21). The findings offer valuable insights for understanding genetic 

diversity among different disease classes and establishing accurate biomarker classifications. 

Furthermore, the observed differences in the dendrogram may contribute to better 

differentiation of diseases and the development of personalized treatment strategies. 

Conclusion 

The hierarchical clustering analysis presented in Figure 4 provides a structured approach to 

understanding gene expression dynamics in RA. By categorizing genes into distinct biomarker 

classes, this study underscores the interconnected nature of autoimmune, inflammatory, and 

pathological mechanisms in RA. The results further emphasize the significance of 

inflammation-related genes as potential therapeutic targets, while also identifying critical 

players in disease progression and treatment response. Future research should focus on 

validating these clusters through experimental studies to refine biomarker-based diagnostic and 

therapeutic strategies in RA. 
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